

Journal of Organometallic Chemistry 493 (1995) C14-C18

Preliminary communication

Metallorganische Verbindungen der Lanthanoide XCVI [☆]. Ylidartige Olefinkoordination in Komplexen dreiwertiger 4f-Elemente

Herbert Schumann^{a,*}, Mario Glanz^a, Jörn Winterfeld^a, Holger Hemling^a, Norbert Kuhn^{b,*}, Hans Bohnen^b, Dieter Bläser^c, Roland Boese^c

^a Institut für Anorganische und Analytische Chemie der Technischen Universität, Straße des 17. Juni 135, D-10623 Berlin, Deutschland
 ^b Institut für Anorganische Chemie der Universität, Auf der Morgenstelle 18, D-72076 Tübingen, Deutschland
 ^c Institut für Anorganische Chemie der Universität – Gesamthochschule, Universitätsstr. 3–5, D-45117 Essen, Deutschland

Eingegangen am 6. Dezember 1994

Abstract

 $[(Me_{3}Si)_{2}N]_{3}Ln (Ln \equiv La (1) \text{ or } Nd (2)) \text{ and } (C_{8}H_{8})Y(C_{5}Me_{5}) (3) \text{ react with } 1,3,4,5-\text{tetramethyl-2-methylenimidazolin (4) to yield the ylidic olefin complexes } [(Me_{3}Si)_{2}N]_{3}Ln[CH_{2}=CN(Me)C(Me)=C(Me)N(Me)] (Ln \equiv La (5) \text{ or } Nd (6)) \text{ and } (C_{8}H_{8})Y(C_{5}Me_{5})[CH_{2}=CN(Me)C(Me)=C(Me)N(Me)] (7). The molecular structures of 6 and 7 have been determined by X-ray diffraction.$

Zusammenfassung

 $[(Me_{3}Si)_{2}N]_{3}Ln (Ln \equiv La (1) \text{ oder Nd } (2)) \text{ und } (C_{8}H_{8})Y(C_{5}Me_{5}) (3) \text{ reagireren mit } 1,3,4,5\text{-Tetramethyl-2-methylenimidazolin } (4) \text{ unter Bildung der ylidartigen Olefinkomplexe } [(Me_{3}Si)_{2}N]_{3}Ln[CH_{2}=CN(Me)C(Me)=C(Me)N(Me)] (Ln \equiv La (5) \text{ oder Nd } (6)) \text{ und } (C_{8}H_{8})Y(C_{5}Me_{5})[CH_{2}=CN(Me)C(Me)=C(Me)N(Me)] (7). Die Molekülstruktur von 6 und 7 wurde röntgenographisch bestimmt.$

Keywords: Lanthanum; Neodymium; Yttrium; Ylidic complexes; Olefin complexes

1. Einleitung

Olefine als Liganden sind zur Ausbildung stabiler Komplexe für gewöhnlich auf die Donoreigenschaften des Metallzentrums angewiesen. Die Lanthanoid-Elemente mit ihren 4f-Elektronen sind zu Rückbindungen nicht fähig, so daß derartige π -Komplexe bis heute nur selten zugänglich sind [2]. In dem kürzlich synthetisiertem 1,3,4,5-Tetramethyl-2-methylenimidazolin (4) [3] führt die Molekülstruktur des heterocyclischen Fünfringes zu einer extremen Polarisierung der exocyclischen Doppelbindung. Das den Yliden ähnliche System neigt zu terminaler Koordination wie jüngst an Pentacarbonylmetall-Fragmenten gezeigt werden konnte [4] und ließ somit, besonders bei Verbindungen mit niedriger Koordinationszahl, auch Olefinkomplexe der 4f-Elemente darstellbar erscheinen. Diese für Katalysen wichtige 'end-on' Koordination zur Aktivierung von Olefinen [5] ist bisher nur an wenigen Beispielen (Fe, Pd und Pt) strukturanalytisch belegt [6].

Bei der Umsetzung von Tris[bis(trimethylsilyl)amid]lanthan (1) und -neodym (2) [7] sowie (Cyclooctatetraenyl)(pentamethylcyclopentadienyl)yttrium (3) [8] mit 1,3,4,5-Tetramethyl-2-methylenimidazolin (4) [3] lassen sich die entsprechenden ylidartigen Olefinkomplexe 5-7 in guten Ausbeuten erhalten. Die aus Hexan als grüne (6) oder gelbe (5 und 7) Kristalle erhältlichen Verbindungen sind in allen gängigen Lösemitteln sehr

 $[\]stackrel{\text{tr}}{\longrightarrow}$ XCV. Mitteilung siehe [1]. Prof. Dr. Hubert Schmidbaur zum 60. Geburtstag gewidmet.

^{*} Corresponding authors.

gut löslich und außerordentlich empfindlich gegenüber Luftsauerstoff und Feuchtigkeit:

In den NMR-Spektren von 6 ist der paramagnetische Einfluß des Nd³⁺-Ions deutlich zu erkennen, so daß im Folgenden nur die Daten von 5 und 7 diskutiert werden. Die starken Donoreigenschaften von 4 als Ligand sind in den geringen chemischen Verschiebungen der Methylengruppe sowie des C(2)-Kohlenstoff-Atoms bei der Koordination an die elektronisch ungesättigten Lanthanoidfragmente erkennbar, derweil alle anderen Signallagen gegenüber 1 [7], 3 [8] und 4 [3] durch die Komplexbildung erwartungsgemäß wenig beeinflußt werden. So zeigen im ¹³C-NMR Spektrum die Methylen-Kohlenstoff-Atome in 5 (39.0 ppm) und 7 (37.1 ppm) nur eine geringfügige Hochfeldverschiebung (4, 40.2 ppm [3]), die mit der in den analogen Olefinkomplexen $(C_8H_{14}N_2)Mo(CO)_5$ (8, -6.7 ppm) und $(C_8H_{14}N_2)W(CO)_5$ (9, -2.9 ppm) [4] nicht vergleichbar ist. In Folge davon ist in 5 (155.7 ppm) und 7 (155.3 ppm) auch nur eine unbedeutende Koordinationsentschirmung für das C(2)-Atom zu beobachten (4, 153.6 ppm [3]; 8, 163.8 ppm; 9, 163.4 ppm [4]). Offensichtlich genügt für die Wechselwirkung mit dem Lan-

Abb. 1. ORTEP Darstellung [9] von 6 im Kristall (Schwingungsellipsoide mit 50% Aufenthaltswahrscheinlichkeit). Ausgewählte Abstände und Winkel (Standardabweichungen in Klammern) [10]: Nd-N(1), 2.323(5) Å; Nd-N(2), 2.352(5) Å; Nd-N(3), 2.351(5) Å; Nd-C(19), 2.691(6) Å; C(19)-C(20), 1.421(8) Å; N(1)-Nd-N(2), 109.3(2)°; N(2)-Nd-N(3), 124.9(2)°; N(1)-Nd-N(3), 105.0(2)°; N(1)-Nd-C(19), 105.8(2)°; N(2)-Nd-C(19), 87.0(2)°; N(3)-Nd-C(19), 123.0(2)°; Nd-C(19)-C(20), 126.2(4)°.

thanoidzentrum eine minimale Änderung der Ladungsdichte und π -Bindungsordnung an der Doppelbindung.

Auch der Koordinationseffekt der Methylenprotonen bezüglich ihrer chemischen Verschiebung in den ¹H-NMR Spektren ist in 5 (2.02 ppm) und 7 (2.17 ppm) gegenüber 4 (2.77 ppm) [3] bedeutend kleiner als in den Übergangsmetallkomplexen 8 (1.37 ppm) und 9 (1.54 ppm) [4]. Die Hochfeldverschiebung der an der ringständigen Doppelbindung fixierten Methylprotonen (4, 1.70 ppm [3]; 5, 1.32 ppm; 7, 1.54 ppm) kann als Zeichen der Delokalisierung des π -Elektronensextetts innerhalb des heterocyclischen Fünfringes im 2-Methylenimidazolin-Liganden interpretiert werden.

Eine Charakterisierung von 5–7 durch Massenspektren ("electron impact", 70 eV) ist auf Grund fehlender Molpeaks wie erwartet nicht möglich.

2. Ergebnisse und Diskussion

Als Ergebnis der Röntgenstrukturanalyse von **6** [10] zeigt Abb. 1 die stark verzerrte, tetraedrische Anordnung der Liganden um das Nd³⁺-Ion, die nur bedingt mit dem Aufbau des kürzlich synthetisierten Anions {[(SiMe₃)₂N]₃Nd(OSiMe₃)}⁻ [13], besser dagegen mit dem pyramidalen [(SiMe₃)₂N]₃Nd [7] vergleichbar ist. Während die Abstände Nd–N den Erwartungen gerecht werden, variieren die Winkel N–Nd–N und N–Nd–C19 beträchtlich. Die Distanz Nd–C(19) ist deutlich größer als die entsprechenden Nd–C Bindungen in Cp₂^{*}Nd-CH(SiMe₃)₂ (2.517(7) Å) [14], (Me₂SiCp₂^{*})NdCH- $(SiMe_3)_2$ (2.506(7) Å) [15] sowie $[Cp_3NdPh]^-$ (2.593(17)-2.613(13) Å) [16] und besitzt damit den Charakter einer gestreckten Einfachbindung. Diese "Koordination" des Methylenkohlenstoffs geht erwartungsgemäß konform mit einer Aufweitung der exocyclischen Doppelbindung C(19)-C(20) (4, 1.357(3) Å [3]).

Sowohl in 6 als auch in dem röntgenografisch ebenfalls untersuchten Komplex 7 [17] (Abb. 2) sind die cyclischen Enamin-Abstände (6: C(20)-N(4), 1.355(7) Ă; C(20)–N(5), 1.349(7) Ă) (7: C(2)-N(1), 1.364(17) Å; C(2)–N(3), 1.309(16) Å) auf Grund von $p_{\pi}p_{\pi^{-1}}$ Wechselwirkungen in den Bereich von Doppelbindungen verkürzt; ein Resultat, das die These von der Delokalisierung der π -Elektronen innerhalb des Imidazolin-Liganden stützt. Auch in 7 erfolgt unter Aufweitung der Doppelbindung C(10)-C(2) die Koordination des Methylenkohlenstoffs an das Metallzentrum, wobei der Abstand Y-C(10) wiederum deutlich größer als die vergleichbaren Einfachbindung in $Cp_2^* YMe(THF)$ (THF = Tetrahydrofuran) (2.44(2) Å) [19], $(Cp_2YMe)_2$ (2.553(10) Å) [20] und Cp_2^*Y - $CH(SiMe_3)_2$ (2.468(7) Å) [21] ist. Die Abstände Y-Cp* und Y-COT sowie der Winkel Cp*-Y-COT korrelieren mit den Daten bekannter Cyclooctatetraenylcyclopentadienyl-Derivate der Lanthanoide [8,22]:

Die starke Polarisierung der exocyclischen Doppelbindung und die weitgehende Delokalisierung der π -Elektronen innerhalb des Imidazolin-Liganden, offensichtlich wichtige Voraussetzungen für die Darstellung, lassen für die Komplexe 5–7 auch eine Interpretation als zwitterionische Alkylverbindungen ähnlich den bekannten Ylidkomplexen [23] zu. Allerdings steht dem die Aufweitung der Ln–C Bindung, die Elektronegativitätsverteilung zwischen Ln und C sowie die sehr gute Löslichkeit gegenüber. Röntgenstrukturuntersuchungen weisen für Phosphorylide der Seltenen Erden normale Einfachbindungen aus [24]. Die Betrachtung von 5–7 als ylidartige Olefinkomplexe erscheint sinnvoller und läßt hoffen, daß die dreiwertigen Lan-

Abb. 2. ORTEP Darstellung [9] von 7 im Kristall (Schwingungsellipsoide mit 50% Aufenthaltswahrscheinlichkeit). Ausgewählte Abstände und Winkel (Standardabweichungen in Klammern; Cp⁺ und COT beschreiben die Mittelpunkte der Ringe) [17]: $Y-Cp^+$, 2.410(13) Å; Y-COT, 1.895(15) Å; Y-C(10), 2.624(11) Å; C(10)-C(2), 1.431(17) Å; $Cp^+-Y-COT$, 144.8(5)°; $Cp^+-Y-C(10)$, 96.9(5)°; COT-Y-C(10), 118.3(5)°; Y-C(10)-C(2), 123.1(8)°.

thanoide allein auf Grund ihrer Fähigkeit zur Ausbildung hoher Koordinationszahlen Olefine binden können. So gesehen stellen die 1,3,4,5-Tetramethyl-2-methylenimidazolin-Komplexe möglicherweise ein "stabiles Modell" eines katalytischen Elementarschrittes dar.

2. Experimenteller Teil

Sämtliche Arbeiten sind in sorgfältig getrockneten und entgasten Lösemitteln, sowie in reiner Argonatmosphäre durchgeführt worden. Die Komplexe 1, 2 [7], 3 [8] und 4 [3] wurden gemäß Literaturangaben erhalten. Die Aufnahme der NMR-Spektren erfolgte an einem Bruker AMX-200 bei 200 MHz (¹H) bezeihungsweise 50.32 MHz (¹³C). Die Elementaranlysen wurden an einem Perkin-Elmer 240C CHN-Elemental-Analyzer durchgeführt.

2.1. Tris[bis(trimethylsilyl)amid](1,3,4,5-tetramethyl-2methylenimidazolin)lanthan(III) (5)

Zu einer Lösung von 0.60 g (1.0 mmol) 1 in 40 ml *n*-Hexan werden bei -20° C 0.14 g (1.0 mmol) 4 in 10 ml Toluol getropft und 12 h bei 25°C gerührt. Das Lösemittelgemisch wird im Vakuum entfernt und der Rückstand in 30 ml *n*-Hexan suspendiert. Aus der klaren, auf 20 ml eingeengten Lösung erhält man bei -78° C **5** als gelbe Kristalle (Ausbeute, 0.49 g (68%); Schmp. (0.1 mbar): 108°C (Zersetzung)). Anal. gef.: C, 41.32; H, 9.09; N, 8.99. C₂₆ H₆₈N₅Si₆La (758.28) ber.: C, 41.18; H, 9.04; N, 9.24%. ¹H-NMR (C₆D₆): δ 2.68 (s, 6H, NCH₃), 2.02 (s, 2H, CH₂), 1.32 (s, 6H, CCH₃), 0.42 (s, 54H, SiCH₃) ppm. ¹³C-NMR (C₆D₆): δ 155.7 (=C), 115.7 (CCH₃), 39.0 (CH₂), 28.5 (NCH₃), 6.4 (CCH₃), 3.7 (SiCH₃) ppm.

2.2. Tris[bis(trimethylsilyl)amid](1,3,4,5-tetramethyl-2methylenimidazolin)neodym(III) (6)

Analog 5 werden 0.61 g (1.0 mmol) 2 mit 0.14 g (1.0 mmol) 4 umgesetzt und man erhält bei -78° C 6 als grüne Kristalle (Ausbeute, 0.46 g (62%); Schmp. (0.1 mbar): 117°C (Zersetzung)). Anal. gef.: C, 40.82; H, 9.04; N, 8.95. C₂₆H₆₈N₅Si₆Nd (763.61) ber.: C, 40.90; H, 8.98; N, 9.17%. ^TH-NMR (C₆D₆): δ -1.23 (s, 6H, NCH₃), -1.66 (s, 6H, CCH₃), -2.06 (s, 54H, SiCH₃), -54.77 (s, 2H, CH₂) ppm.

2.3. (Cyclooctatetraenyl)(pentamethylcyclopentadienyl) (1,3,4,5-tetramethyl-2-methylenimidazolin)yttrium(III) (7)

Analog 5 werden 0.66 g (2.0 mmol) 3 mit 0.28 g (2.0 mmol) 4 umgesetzt und man erhält bei -78° C 7 als gelbe Kristalle (Ausbeute, 0.50 g (54%); Schmp. (0.1 mbar): 115°C (Zersetzung). Anal. gef.: C, 69.68; H, 7.91; N, 5.44. C₂₆H₃₆N₂Y · 0.5C₆H₆ (504.55) ber.: C, 69.02; H, 7.80; N, 5.56%. ¹H-NMR (C₆D₆): δ 6.33 (s, 8H, C₆H₈), 2.67 (s, 6H, NCH₃), 2.17 (s, 2H, CH₂), 1.80 (s, 15H, C₅CH₃), 1.54 (s, 6H, CCH₃) ppm. ¹³C-NMR (C₆D₆): δ 155.3 (=C), 116.1 (C₅CH₃), 116.0 (CCH₃), 94.4 (C₈H₈), 37.1 (CH₂), 29.4 (NCH₃), 10.3 (C₅CH₃), 8.6 (CCH₃) ppm.

Dank

Diese Arbeit wurde von der Deutschen Forschungsgemeinschaft, dem Fonds der Chemischen Industrie und dem Bundesminister für Bildung und Wissenschaft (Graduiertenkolleg "Synthese und Strukturaufklärung niedermolekularer Verbindungen") gefördert.

Literatur und Bemerkungen

- A.V. Protschenko, E.A. Federova, M.N. Bochkarev, H. Schumann, J. Loebel und G. Kociok-Köhn, *Izv. Akad. Nauk SSSR*, *Ser. Khim.*, im Druck.
- [2] C.J. Burns und R.A. Andersen, J. Am. Chem. Soc., 109 (1987) 915-917; W.J. Evans und T.A. Ulibarri, J. Am. Chem. Soc., 109 (1987) 4292-4297; W.J. Evans und T.A. Ulibarri, J. Am. Chem. Soc., 112 (1990) 2314-2324; A. Scholz, A. Smola, J.

Scholz, J. Loebel, H. Schumann und K.-H. Thiele, Angew. Chem., 103 (1991) 444-445; Angew. Chem., Int. Edn. Engl., 30 (1991) 435-436.

- [3] N. Kuhn, H. Bohnen, J. Kreutzberg, D. Bläser und R. Boese, J. Chem. Soc., Chem. Commun., (1993) 1136–1137.
- [4] N. Kuhn, H. Bohnen, D. Bläser und R. Boese, Chem. Ber., 127 (1994) 1405–1407.
- [5] D.M.P. Mingos, Bonding of Unsatered Organic Molecules to Transition Metals in Comprehensive Organometallic Chemistry G. Wilkinson, F.G.A. Stone und E.W. Abel (Hrsgn.), Pergamon, Oxford, 1982; G.W. Parshall und S.D. Ittel Homogenous Catalysis, Wiley, New York, 1992.
- [6] D.J. Ehntholt, G.F. Emerson und R.C. Kerber, J. Am. Chem. Soc., 91 (1969) 7547-7548; R.C. Kerber und D.J. Ehntholt, J. Am. Chem. Soc., 95 (1973) 2927-2934; M.R. Churchill und J.P. Fennessey, J. Chem. Soc. D, (1970) 1056-1057; T.C.T. Chang, B.M. Foxman, M. Rosenblum und C. Stockman, J. Am. Chem. Soc., 103 (1981) 7361-7362; R. McGrindle, G. Ferguson, G.J. Arsenault, A.J. McAlees und D.K. Stephenson, J. Chem. Res. S, (1984) 360-361; J. Chem. Res. M, (1984) 3301-3344; A. de Rienzi, B. di Blasio, G. Paiaro und A. Panunzi, Gazz. Chim. Ital., 106 (1976) 765-768; P.P. Ponti, J.C. Baldwin und W.C. Kaska, Inorg. Chem., 18 (1979) 873-875.
- [7] D.C. Bradley, J.S. Ghotra und F.A. Hart, J. Chem. Soc., Chem. Commun. (1972) 349–350; J. Chem. Soc., Dalton Trans., (1973) 1021–1023; R.A. Andersen, D.H. Templeton und A. Zalkin, Inorg. Chem., 17 (1978) 2317–2319.
- [8] H. Schumann, R.D. Köhn, F.-W. Reier, A. Dietrich und J. Pickardt, Organometallics, 8 (1989) 1388-1392.
- [9] C.K. Johnson, ORTEP-II, Rep. ORNL-5138, 1976 (Oak Ridge National Laboratory, TN).
- [10] Kristalldaten 6: $0.15 \times 0.25 \times 0.25$ mm; monoklin; $P2_1 / n$; a =11.251(2) Å, b = 20.000(3) Å und c = 19.567(3) Å; $\beta =$ 91.080(10)°; V = 4402.2(12) Å³; Z = 4; $\rho_{\text{ber}} = 1.217$ g cm⁻³. Meßparameter: Enraf-Nonius CAD 4; T = 160(2) K; $\lambda = 71.069$ pm (Mo K α), Graphit-Monochromator; $\mu = 1.309 \text{ mm}^{-1}$; Ω - 2θ ; $1.46^{\circ} \le \theta \le 25.10^{\circ}$; 7539 gemessene; 7151 unabhängige $(R_{int} = 0.0437);$ 7101 beobachtete Reflexe $(|F_0| \ge 4\sigma |F_0|);$ Korrekturen, Lorentz, Polarisation, Decay (minimum, 1.000; maximum, 1.017), DIFABS (minimum, 0.844; maximum, 1.400); Lösung, Patterson (SHELX-86 [11]); Differenz-Fourier (SHELX-93 [12]); alle Nichtwasserstoffatome anisotrop; alle Wasserstoffpositionen isotrop berechnet ($u_{iso,H} = 0.08 \text{ Å}^2$); e_0 maximum, 0.836 Å³; e_0 minimum -0.911 Å^3 ; verfeinerte Parameter, 370; $R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$ 0.0473, $wR_2 = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w (F_o^2)^2]^{1/2} = 0.1315$. Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD-58728 angefordert werden.
- [11] G.M. Sheldrick, SHELXS-86, Programm for Crystal Structure Solution, Universität Göttingen, Göttingen, 1986.
- [12] G.M. Sheldrick, SHELXL-93, Program for Crystal Structure Determination, Universität Göttingen, Göttingen, 1993.
- [13] F.T. Edelmann, A. Steiner, D. Stalke, J.W. Gilje, S. Jagner und M. Håkansson, *Polyhedron*, 13 (1994) 539-546.
- [14] G. Jeske, H. Lauke, H. Mauermann, P.N. Swepston, H. Schumann und T.J. Marks, J. Am. Chem. Soc., 107 (1985) 8091– 8103.
- [15] G. Jeske, L.E. Schock, P.N. Swepston, H. Schumann, und T.J. Marks, J. Am. Chem. Soc., 107 (1985) 8103–8110.
- [16] Q. Shen, W. Chen, Y. Jin und C. Shan, *Pure Appl. Chem.*, 60 (1988) 1251–1256; H. Gao, Q. Shen, J. Hu, S. Jin und Y. Lin, J. Organomet. Chem., 427 (1992) 141–149.
- [17] Kristalldaten 7. $\frac{1}{2}C_6H_6$: $0.46 \times 0.38 \times 0.21$ mm; monoklin; $P2_1/n$; a = 13.528(5) Å, b = 13.524(7) Å und c = 15.421(7)Å; $\beta = 106.78(3)^\circ$; V = 2701(2) Å³; Z = 4; $\rho_{ber} = 1.243$ g

cm⁻³. Meßparameter: Nicolet R3m/V; T = 180 K; $\lambda = 71.069$ pm (Mo K_{α}); Graphit-Monochromator; $\mu = 2.18$ mm⁻¹, $\Omega - 2\theta$; $3^{\circ} \le 2\theta \le 50^{\circ}$; 3879 unabhängige; 2249 beobachtete Reflexe ($|F_{o}| > 4\sigma |F_{o}|$); Korrekturen, Lorentz, Polarisation, DI-FABS (minimum, 0.62; maximum, 0.91), empirische Absorption; Lösung, Patterson (SHELX-86) [11]); Differenz-Fourier (SHELXTL-PLUS [18]); alle Nichtwasserstoffatome anisotrop; alle Wasserstoffpositionen isotrop berechnet ($u_{iso,H} = 0.08$ Å²); e_0 maximum, 1.57 Å³; e_0 minimum, -0.91 Å³; verfeinerte Parameter, 294; $R = \Sigma ||F_0| - |F_c|| / \Sigma |F_0| 0.0901$; $Rw = [\Sigma w(F_o - F_c)^2 / \Sigma w(F_0)^2]^{1/2} = 0.0881$. Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD-58728 angefordert werden.

- [18] G.M. Sheldrick, SHELXTL-PLUS, Release 4.2 for Siemens R3 Crystallographic Research Systems, Siemens Analytical X-Ray Instruments, Madison, WI, 1990.
- [19] K.H. den Haan, J.L. de Boer, J.H. Teuben, W.J.J. Smeets und A.L. Spek, J. Organomet. Chem., 327 (1987) 31–38.

- [20] J. Holton, M.F. Lappert, D.G.H. Ballard, R. Pearce, J.L. Atwood und W.E. Hunter, J. Chem. Soc., Dalton Trans., (1979) 54-61.
- [21] K.H. den Haan, J.L. de Boer, J.H. Teuben, A.L. Spek, B. Kojic-Prodic, G.R. Hays und R. Huis, Organometallics, 5 (1986) 1726-1733.
- [22] H. Schumann, M. Glanz, J. Winterfeld und H. Hemling, J. Organomet. Chem., 456 (1993) 77-83; H. Schumann, J. Winterfeld, M. Glanz, R.D. Köhn und H. Hemling, J. Organomet. Chem., 481 (1994) 275-282.
- [23] H. Schumann und F.W. Reier, J. Organomet. Chem., 209 (1981) C10-C12; H. Schumann und F.W. Reier, J. Organomet. Chem., 235 (1982) 287-294; H. Schumann, F.W. Reier und M. Dettlaff, J. Organomet. Chem., 255 (1983) 305-310; H. Schumann und F.W. Reier, J. Organomet. Chem., 269 (1984) 21-27; H. Schumann und F.W. Reier, Inorg. Chim. Acta, 95 (1984) 43-48.
- [24] H. Schumann, I. Albrecht und F.W. Reier, E. Hahn, Angew. Chem., 96 (1984) 503-504; Angew. Chem., Int. Edn. Engl., 23 (1984) 522-523.